4: An Exponential-Time Algorithm

Wednesday, 24 August 2022 10:33 A

Computing Equilibre in General Binnatrix Garry.

Let (R,C) be a general binnatrix game, $R.C \in \mathbb{R}^{m\times n}$. Thus row player has an pure Strategies, column player has a pure Strategies, and $X \in \Delta m$. $Y \in \Delta n$ are mixed Strategies. We use e_i to denote the column vector $[0...010...0]^T$.

We will now give an exponential-time algorithm for

Computy equilibria in bimatrix games.

Recell: grûn x & Dm, Supp (x) = {i: xi > 0}

Sinilarly for y & Dn.

Fix Se C [m], Sc C [n] as subsets of pure Strategies for the players. Consider the following LP:

for the players. Consider the following LP:

 $P(S_R, S_c)$: max OS.t. $X \in \Delta_m$

y e sn

 $\forall j \notin SR$, $\chi_i = 0$ $\forall j \notin SL$, $\forall j = 0$ $\forall i \in SR, i' \in [m], (Ry)_i > (Ry)_{i'}$

 $\forall j \in \{c, j' \in [n], (C \times)_j \} \subset (C \times)_{j'}$

So: (A) x is supported on Se, y on Sc (B) Se is a subset of best-ruponess to y

Sc is a Subset of best-responses to X

Theorem: O If (x^*, y^*) is a feasible soln to $P(S_R, S_C)$, then (x^*, y^*) is a NE of the game.

(i) If (x*,y*) is a NE, let Se*= supp (x*), Sc*= supp (y*).

(x*, y*) is a feasible solm to P(Sp*, Se*).

Proof of (1): less y.

Note: (1) Every LP w/ rational coefficients had a rational con.
Hence, if utilities R, C are rational, the game has a

(I) Let (x_i^*, y^*) , (x_i^*, y^*) be two equilibric of (R.C).

Then $\forall 0 \leq \lambda \leq 1$, $(\lambda x_1^* + (1-\lambda) x_2^*, y^*)$ is also an equilibrium.

& frove (1) yourself.

Claim 1: (x*, y*) is a NE iff

froof of theorem ():

 $x^{*}ly^{*} \ge e_{i}^{7}ly^{*} + i \in [m]$ $y^{*}Cx^{*} \ge e_{j}^{7}Cx^{*} + j \in [n]$

Proof: Easy.
Corollary: (xx, yx) is a NE iff

supp (x^*) \subseteq arg max $(Ry^*)_i$

& supply*) _C and mos (Cx*) j Proof of theorem: By the constraints:

Supp (x^*) $\stackrel{\circ}{\subseteq}$ $\stackrel{\circ}{\subseteq}$ $\stackrel{\circ}{\subseteq}$ $\stackrel{\circ}{\cong}$ \stackrel

Hence, (x*, y*) is a NE by the corollary.

By Nashi Theorem, we know I a NF, here I SR, Se for

which $P(S_R, S_c)$ is feasible.

Algorithm enumerated over all possible $S_R \subseteq [m]$, $S_C = [n]$, $S_C = [n]$